Overview of Sensor Networks
نویسندگان
چکیده
makes it possible to instrument the world with increasing fidelity. To realize this opportunity, information technology must address a new collection of challenges. The individual devices in a wireless sensor network (WSN) are inherently resource constrained: They have limited processing speed, storage capacity, and communication bandwidth. These devices have substantial processing capability in the aggregate, but not individually, so we must combine their many vantage points on the physical phenomena within the network itself. In most settings, the network must operate for long periods of time and the nodes are wireless, so the available energy resources—whether batteries, energy harvesting, or both—limit their overall operation. To minimize energy consumption, most of the device’s components, including the radio, will likely be turned off most of the time. Because they are so closely coupled to a changing physical world, the nodes forming the network will experience wide variations in connectivity and will be subject to potentially harsh environmental conditions. Their dense deployment generally means that there will be a high degree of interaction between nodes, both positive and negative. Each of these factors further complicates the networking protocols. Despite these operational factors, deploying and maintaining the nodes must remain inexpensive. Because manually configuring large networks of Wireless sensor networks could advance many scientific pursuits while providing a vehicle for enhancing various forms of productivity, including manufacturing, agriculture, construction, and transportation.
منابع مشابه
ENERGY AWARE DISTRIBUTED PARTITIONING DETECTION AND CONNECTIVITY RESTORATION ALGORITHM IN WIRELESS SENSOR NETWORKS
Mobile sensor networks rely heavily on inter-sensor connectivity for collection of data. Nodes in these networks monitor different regions of an area of interest and collectively present a global overview of some monitored activities or phenomena. A failure of a sensor leads to loss of connectivity and may cause partitioning of the network into disjoint segments. A number of approaches have be...
متن کاملAn efficient solution for management of pre-distribution in wireless sensor networks
A sensor node is composed of different parts including processing units, sensor, transmitter, receiver, and security unit. There are many nodes in a sensor unit. These networks can be used for military, industrial, medicine, environmental, house, and many other applications. These nodes may be established in the lands of enemies to monitor the relations. Hence, it is important to consider conse...
متن کاملTarget Tracking Based on Virtual Grid in Wireless Sensor Networks
One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of this paper was to introduce an efficient and novel mobility management protocol namely Target Tr...
متن کاملA novel key management scheme for heterogeneous sensor networks based on the position of nodes
Wireless sensor networks (WSNs) have many applications in the areas of commercial, military and environmental requirements. Regarding the deployment of low cost sensor nodes with restricted energy resources, these networks face a lot of security challenges. A basic approach for preparing a secure wireless communication in WSNs, is to propose an efficient cryptographic key management protocol be...
متن کامل3D Path Planning Algorithm for Mobile Anchor-Assisted Positioning in Wireless Sensor Networks
Positioning service is one of Wireless Sensor Networks’ (WSNs) fundamental services. The accurate position of the sensor nodes plays a vital role in many applications of WSNs. In this paper, a 3D positioning algorithm is being proposed, using mobile anchor node to assist sensor nodes in order to estimate their positions in a 3D geospatial environment. However, mobile anchor node’s 3D path optim...
متن کاملRepresenting a Model for Improving Connectivity and Power Dissipation in Wireless Networks Using Mobile Sensors
Wireless sensor networks are often located in areas where access to them is difficult or dangerous. Today, in wireless sensor networks, cluster-based routing protocols by dividing sensor nodes into distinct clusters and selecting local head-clusters to combine and send information of each cluster to the base station and balanced energy consumption by network nodes, get the best performance ...
متن کامل